
Why is Quantum Gravity so hard?
John Wheater

Morning of Theoretical Physics
January 9th 2021

1



Particle Mechanics
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Classically ,  so we can know  and  but 
quantum mechanically this is not allowed so …

ℏ = 0 xcl(t) pcl(t)

Mass m moving in potential VCE)
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⟨x1, t1 |x0, t0⟩ = ∫ Dx exp ( i
ℏ ∫

t1

t0

dt 1
2 m ·x2 − V(x))

Feynman Path Integral: sum over all paths gives amplitude 

= ⟨x1, t1 |x0, t0⟩

potential Vfx)
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Momentum not specified

Momentum not measuredAll paths possible
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δS = (∫
t1

t0

dt 1
2 m( ·xcl + δ ·x)2 − V(xcl + δx)) − (∫

t1

t0

dt 1
2 m ·x2 − V(x))

= ∫
t1

t0

dt m ·xcl .
d
dt

δx − ∇V(xcl) . δx

= [m ·xcl . δx]t1
t0

+ ∫
t1

t0

dt (−m··xcl − ∇V(xcl)) . δx

m··xcl = − ∇V(xcl)0

Equation of motion

Classical physics  integral dominated by stationary pointℏ → 0



 QED
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= ⟨E1(x), ψ1(x), t1 |E0(x), ψ0(x), t0⟩

B = ∇ × A, E = − ∇V + ∂tA

Xo k 4
,
t)

''
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matter field

electric field

Fμν = ∂μAν − ∂νAμ

can be written as the field strength tensor 
Aμ = (V, A) μ, ν ∈ 0,1,2,3where and

Gauge invariance: when Aμ → Aμ + ∂μ χ we see that Fμν → Fμν

Fμν Aμand transform covariantly under Lorentz transformations
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∫ DADψ exp ( i
ℏ ∫

t1

t0

dt∫ d3x (− 1
4 FμνFμν + ψ(γμ(∂μ − ieAμ) − m)ψ))

Feynman PI: sum over all interpolating field configurations 

            stationary point gives Maxwell’s equations ∂μFμν = jνℏ → 0

⟨E1(x), ψ1(x), t1 |E0(x), ψ0(x), t0⟩ =

in principle the FPI finds any amplitude in terms of  

            we  get Quantum Electrodynamics (QED) — ℏ ≠ 0

e, m, ℏ
and the boundary conditions, in practice hard work!
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Melisa QT
*Pned

0.001 159 652 180 73 (28)  experimentae =
g − 2

2
=

It predicts unambiguous relationships between measurables   
and expansion in  works spectacularly well egαem

0.001 159 652 181 60 (23)  theory

QED is renormalizable —

But actually….



General Relativity

8

ds2 = gμνdxμdxνProper distance

Space       of fixed topology,M and metric gμν

Euclidean plane ds2 = dx2 + dy2

xμ → x′ 
μ(x), gμν(x) → g′ μν(x′ )Re-parametrization:

We can change coordinate systems eg Euclidean to plane polar; the  
coordinates of A and B change but the proper distance does not

ds2 → ds2but
Proper distance is not the only frame independent characteristic of M, gμν

M B

|¥g•x"xd
"



General Relativity
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ds2 = gμνdxμdxνProper distance

Space       of fixed topology,M and metric gμν

Two-sphere ds2 = k2(dθ2 + sin2 θdϕ2)

xμ → x′ 
μ(x), gμν(x) → g′ μν(x′ )Re-parametrization:

We can change coordinate systems eg Euclidean to plane polar; the  
coordinates of A and B change but the proper distance does not

ds2 → ds2but
Proper distance is not the only frame independent characteristic of M, gμν

M B
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General Relativity
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ds2 = gμνdxμdxνProper distance

Space       of fixed topology,M and metric gμν

ds2 = ημνdxμdxν = dt2 − dx2Minkowski  
space-time

xμ → x′ 
μ(x), gμν(x) → g′ μν(x′ )Re-parametrization:

We can change coordinate systems eg Euclidean to plane polar; the  
coordinates of A and B change but the proper distance does not

ds2 → ds2but
Proper distance is not the only frame independent characteristic of M, gμν

M B

|¥g•x"xd
"
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Rμν− 1
2 Rgμν + Λcgμν = 8πG Tμν

      is the dynamical degree of freedom  + curvature of space-time is          
generated by mass/energy leading to Einstein’s equations
gμν

Intrinsic curvature M B

|fq_•x^tds#Yul"Rρ
μνλ, Rμν = Rλ

μνλ, R = Rμνgμν

Euclidean plane R = 0

Non-linear partial differential equations for the metric; specify initial 
conditions and solve!  Excellent agreement with observation and experiment
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Rμν− 1
2 Rgμν + Λcgμν = 8πG Tμν

      is the dynamical degree of freedom  + curvature of space-time is          
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Intrinsic curvature M B
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stress-energy tensor
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cosmological term
stress-energy tensor
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Quantum Gravity?
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∫ DgDψ exp ( i
ℏ ∫ d4x −g ( 1

16πG
(R − 2Λc) + matter + boundary terms))

Physical amplitudes must be reparametrization invariant …

t.FI. P.⟨P1, s |P0, 0⟩ =
universe exists for  
proper time    ands
FPI  is a sum over 
all such metrics ?



            stationary point gives Einstein’s equations ℏ → 0Einstein-Hilbert action

Quantum Gravity?

10

∫ DgDψ exp ( i
ℏ ∫ d4x −g ( 1

16πG
(R − 2Λc) + matter + boundary terms))

Physical amplitudes must be reparametrization invariant …

t.FI. P.⟨P1, s |P0, 0⟩ =
universe exists for  
proper time    ands
FPI  is a sum over 
all such metrics ?



Quantum Field Theory in a fixed background space-time

Quantum Gravity?

10

∫ DgDψ exp ( i
ℏ ∫ d4x −g ( 1

16πG
(R − 2Λc) + matter + boundary terms))

Physical amplitudes must be reparametrization invariant …

t.FI. P.⟨P1, s |P0, 0⟩ =
universe exists for  
proper time    ands
FPI  is a sum over 
all such metrics ?
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What does    mean?∫ Dg

Rμν− 1
2 Rgμν = 8πG Tμν ∂μ∂μh̄λρ = − 16πG Tμν gravitational waves

First attempt — copy QED with a perturbation expansion in G

Gav (x) = Npr t hyun la)
gravity is ‘weak’ so perhaps…

In Q-GR fine structure constant αGR =
GΛ2

ℏ
is the expansion parameter

Λ = me, αGR ≈ 10−46 Λ ≈ 1023me ≈ 10−7kg, αGR ≈ 1
weak!! hmmm….
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• Keep , work in a regime where it is small — ‘effective field theory’,  
   learn a lot but it’s not the final solution

Λ

• String theory — contains  and a consistent minimum distance scale, 
   but lots of other degrees of freedom

hμν

- no

mi t:e:¥
nI :

Q-GR is not renormalizable —  
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Λ

• String theory — contains  and a consistent minimum distance scale, 
   but lots of other degrees of freedom

hμν
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mi t:e:¥
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Q-GR is not renormalizable —  
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What does    mean?∫ Dg

Second attempt —

metric democracy…
"
m?H¥?÷ .
W

4-dimensional manifolds are only partially charted territory —
it’s a very hard problem, so let’s look at a toy model …
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What does    mean?∫ Dg

Second attempt —

metric democracy…
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m?H¥?÷ .
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 topology democracy?⟹

MAAN
P
.

.
Pi

homie
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What does    mean?∫ Dg

Second attempt —

metric democracy…
"
m?H¥?÷ .
W
*gigging "po.tt?hvp,

 topology democracy?⟹

MAAN
P
.

.
Pi

homie

Wormholes!

Splits!

Joins!

4-dimensional manifolds are only partially charted territory —
it’s a very hard problem, so let’s look at a toy model …
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graph distance  geodesic distance∼

Graph of equilateral triangles…

3-fold vertex  place of positive curvature∼
6-fold vertex  place of zero curvature∼
7-fold vertex  place of negative curvature∼

Idea… Fix topology, , then sum over genus∑
T

∼ ∫ Dg

t t . . . . .⟨P1, s |P0, 0⟩ = ∑
T
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What  do our ‘universes’ look like?

A long, long way from flat 2d space!÷..
Volume(s < s0) ∝ s4

0
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What  do our ‘universes’ look like?

A long, long way from flat 2d space!÷..
Volume(s < s0) ∝ s4

0

It is extraordinarily non-trivial that our quantum universe is  
so very four-dimensional locally and globally


