Why is Quantum Gravity so hard?

John Wheater
Morning of Theoretical Physics January 9th 2021

Particle Mechanics

Mass m moving in polatial $V(x)$

Classically $\hbar=0$, so we can know $\mathbf{x}_{c l}(t)$ and $\mathbf{p}_{c l}(t)$ but quantum mechanically this is not allowed so ...

Momentum not specified
platiol $V(\underline{x})$

All paths possible
Momentum not measured
Feynman Path Integral: sum over all paths gives amplitude

$$
\left\langle\mathbf{x}_{1}, t_{1} \mid \mathbf{x}_{0}, t_{0}\right\rangle=\int D \mathbf{x} \exp \left(\frac{i}{\hbar} \int_{t_{0}}^{t_{1}} d t \frac{1}{2} m \dot{\mathbf{x}}^{2}-V(\mathbf{x})\right)
$$

Classical physics $\hbar \rightarrow 0$ integral dominated by stationary point

$$
\begin{aligned}
& \delta S=\left(\int_{t_{0}}^{t_{1}} d t \frac{1}{2} m\left(\dot{\mathbf{x}}_{c l}+\delta \dot{\mathbf{x}}\right)^{2}-V\left(\mathbf{x}_{c l}+\delta \mathbf{x}\right)\right)-\left(\int_{t_{0}}^{t_{1}} d t \frac{1}{2} m \dot{\mathbf{x}}^{2}-V(\mathbf{x})\right) \\
&=\int_{t_{0}}^{t_{1}} d t m \dot{\mathbf{x}}_{c l} \cdot \frac{d}{d t} \delta \mathbf{x}-\nabla V\left(\mathbf{x}_{c l}\right) \cdot \delta \mathbf{x} \\
&=\left[m \dot{\mathbf{x}}_{c l} \cdot \delta \mathbf{x}\right]_{t_{0}}^{t_{1}}+\int_{t_{0}}^{t_{1}} d t\left(-m \ddot{\mathbf{x}}_{c l}-\nabla V\left(\mathbf{x}_{c l}\right)\right) \cdot \delta \mathbf{x} \\
& \quad \underbrace{}_{0} \ddot{\mathbf{x}}_{c l}=-\nabla V\left(\mathbf{x}_{c l}\right)
\end{aligned}
$$

Equation of motion

QED

$\mathbf{B}=\nabla \times \mathbf{A}, \quad \mathbf{E}=-\nabla V+\partial_{t} \mathbf{A} \quad$ can be written as the field strength tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ where $A_{\mu}=(V, \mathbf{A})$ and $\mu, \nu \in 0,1,2,3$
$F_{\mu \nu}$ and A_{μ} transform covariantly under Lorentz transformations Gauge invariance: when $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \chi$ we see that $F_{\mu \nu} \rightarrow F_{\mu \nu}{ }_{5}$

QED

$$
=\left\langle\mathbf{E}_{1}(\mathbf{x}), \psi_{1}(\mathbf{x}), t_{1} \mid \mathbf{E}_{0}(\mathbf{x}), \psi_{0}(\mathbf{x}), t_{0}\right\rangle
$$

$\mathbf{B}=\nabla \times \mathbf{A}, \quad \mathbf{E}=-\nabla V+\partial_{t} \mathbf{A} \quad$ can be written as the field strength tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ where $A_{\mu}=(V, \mathbf{A})$ and $\mu, \nu \in 0,1,2,3$
$F_{\mu \nu}$ and A_{μ} transform covariantly under Lorentz transformations Gauge invariance: when $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \chi$ we see that $F_{\mu \nu} \rightarrow F_{\mu \nu}{ }_{5}$

OXFORD

Feynman PI: sum over all interpolating field configurations
$\left\langle\mathbf{E}_{1}(\mathbf{x}), \psi_{1}(\mathbf{x}), t_{1} \mid \mathbf{E}_{0}(\mathbf{x}), \psi_{0}(\mathbf{x}), t_{0}\right\rangle=$
$\int D A D \psi \exp \left(\frac{i}{\hbar} \int_{t_{0}}^{t_{1}} d t \int d^{3} \mathbf{x}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(\gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right)-m\right) \psi\right)\right)$
$\hbar \rightarrow 0$ stationary point gives Maxwell's equations $\partial^{\mu} F_{\mu \nu}=j_{\nu}$
$\hbar \neq 0$ we get Quantum Electrodynamics (QED) -
in principle the FPI finds any amplitude in terms of e, m, \hbar and the boundary conditions, in practice hard work!

But actually....

QED is renormalizable -
It predicts unambiguous relationships between measurables and expansion in $\alpha_{e m}$ works spectacularly well eg

$$
a_{e}=\frac{g-2}{2}=\begin{aligned}
& 0.00115965218073(28) \text { experiment } \\
& 0.00115965218160(23) \text { theory }
\end{aligned}
$$

General Relativity

Space M of fixed topology, and metric $g_{\mu \nu}$
Proper distance $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$
Euclidean plane $\quad d s^{2}=d x^{2}+d y^{2}$

We can change coordinate systems eg Euclidean to plane polar; the coordinates of A and B change but the proper distance does not
Re-parametrization: $\quad x^{\mu} \rightarrow x^{\prime \mu}(x), \quad g_{\mu \nu}(x) \rightarrow g_{\mu \nu}^{\prime}\left(x^{\prime}\right)$

$$
\text { but } d s^{2} \rightarrow d s^{2}
$$

Proper distance is not the only frame independent characteristic of $M, g_{\mu \nu}$

General Relativity

Space M of fixed topology, and metric $g_{\mu \nu}$
Proper distance $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$
Two-sphere $\quad d s^{2}=k^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$

We can change coordinate systems eg Euclidean to plane polar; the coordinates of A and B change but the proper distance does not
Re-parametrization: $\quad x^{\mu} \rightarrow x^{\prime \mu}(x), \quad g_{\mu \nu}(x) \rightarrow g_{\mu \nu}^{\prime}\left(x^{\prime}\right)$

$$
\text { but } d s^{2} \rightarrow d s^{2}
$$

Proper distance is not the only frame independent characteristic of $M, g_{\mu \nu}$

General Relativity

Space M of fixed topology, and metric $g_{\mu \nu}$
Proper distance $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$

$$
\text { Minkowski } \quad d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=d t^{2}-d \mathbf{x}^{2}
$$

 space-time
We can change coordinate systems eg Euclidean to plane polar; the coordinates of A and B change but the proper distance does not
Re-parametrization: $\quad x^{\mu} \rightarrow x^{\prime \mu}(x), \quad g_{\mu \nu}(x) \rightarrow g_{\mu \nu}^{\prime}\left(x^{\prime}\right)$

$$
\text { but } d s^{2} \rightarrow d s^{2}
$$

Proper distance is not the only frame independent characteristic of $M, g_{\mu \nu}$

Intrinsic curvature

$$
R_{\mu \nu \lambda}^{\rho}, \quad R_{\mu \nu}=R_{\mu \nu \lambda}^{\lambda}, \quad R=R_{\mu \nu} g^{\mu \nu}
$$

Euclidean plane $\quad R=0$

$g_{\mu \nu}$ is the dynamical degree of freedom + curvature of space-time is generated by mass/energy leading to Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda_{c} g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

Non-linear partial differential equations for the metric; specify initial conditions and solve! Excellent agreement with observation and experiment

Intrinsic curvature

$$
\begin{aligned}
& R_{\mu \nu \lambda}^{\rho}, \quad R_{\mu \nu}=R_{\mu \nu \lambda}^{\lambda}, \quad R=R_{\mu \nu} g^{\mu \nu} \\
& \text { Two-sphere } \quad R=\frac{1}{r_{1} r_{2}^{\prime}}=k^{-2}
\end{aligned}
$$

$g_{\mu \nu}$ is the dynamical degree of freedom + curvature of space-time is generated by mass/energy leading to Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda_{c} g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

Non-linear partial differential equations for the metric; specify initial conditions and solve! Excellent agreement with observation and experiment

Intrinsic curvature

$$
R_{\mu \nu \lambda}^{\rho}, \quad R_{\mu \nu}=R_{\mu \nu \lambda}^{\lambda}, \quad R=R_{\mu \nu} g^{\mu \nu}
$$

Minkowski $\quad R=0$ space-time

$g_{\mu \nu}$ is the dynamical degree of freedom + curvature of space-time is generated by mass/energy leading to Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda_{c} g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

Non-linear partial differential equations for the metric; specify initial conditions and solve! Excellent agreement with observation and experiment

Intrinsic curvature

$$
R_{\mu \nu \lambda}^{\rho}, \quad R_{\mu \nu}=R_{\mu \nu \lambda}^{\lambda}, \quad R=R_{\mu \nu} g^{\mu \nu}
$$

Minkowski $\quad R=0$ space-time

$g_{\mu \nu}$ is the dynamical degree of freedom + curvature of space-time is generated by mass/energy leading to Einstein's equations

$$
\left.R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda_{c} g_{\mu \nu}=8 \pi \mathbb{C} T_{\mu \nu}\right)
$$

Non-linear partial differential equations for the metric; specify initial conditions and solve! Excellent agreement with observation and experiment

Intrinsic curvature

$$
R_{\mu \nu \lambda,}^{\rho} \quad R_{\mu \nu}=R_{\mu \nu \lambda}^{\lambda}, \quad R=R_{\mu \nu} g^{\mu \nu}
$$

Minkowski $\quad R=0$ space-time

$g_{\mu \nu}$ is the dynamical degree of freedom + curvature of space-time is generated by mass/energy leading to Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\left(\Lambda_{c} g_{\mu \nu}=8 \pi C T_{\mu \nu}\right)
$$

Non-linear partial differential equations for the metric; specify initial conditions and solve! Excellent agreement with observation and experiment

Quantum Gravity?

Physical amplitudes must be reparametrization invariant ...

> universe exists for proper time s and FPI is a sum over all such metrics?
$\int D g D \psi \exp \left(\frac{i}{\hbar} \int d^{4} x \sqrt{-g}\left(\frac{1}{16 \pi G}\left(R-2 \Lambda_{c}\right)+\right.\right.$ matter + boundary terms $\left.)\right)$

Quantum Gravity?

Physical amplitudes must be reparametrization invariant ...

$$
\left\langle P_{1}, s \mid P_{0}, 0\right\rangle=1 \begin{aligned}
& \text { universe exists for } \\
& \text { proper time } s \text { and } \\
& \text { FPI is a sum over } \\
& \text { all such metrics ? }
\end{aligned}
$$ Einstein-Hilbert action $\hbar \rightarrow 0$ stationary point gives Einstein's equations

Quantum Gravity?

Physical amplitudes must be reparametrization invariant ...

Quantum Field Theory in a fixed background space-time

First attempt — copy QED with a perturbation expansion in G gravity is 'weak' so perhaps...

$R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu} \leadsto \partial^{\mu} \partial_{\mu} \bar{h}_{\lambda \rho}=-16 \pi G T_{\mu \nu} \leadsto$ gravitational waves In Q-GR fine structure constant $\alpha_{G R}=\frac{G \Lambda^{2}}{\hbar}$ is the expansion parameter

$$
\begin{gathered}
\Lambda=m_{e}, \quad \alpha_{G R} \approx 10^{-46} \quad \Lambda \approx 10^{23} m_{e} \approx 10^{-7} \mathrm{~kg}, \quad \alpha_{G R} \approx 1 \\
\text { weak!! } \\
\text { hmmm... }
\end{gathered}
$$

OXFORD

Q-GR is not renormalizable -

- Keep Λ, work in a regime where it is small - 'effective field theory', learn a lot but it's not the final solution
- String theory - contains $h_{\mu \nu}$ and a consistent minimum distance scale, but lots of other degrees of freedom

Q-GR is not renormalizable -

- Keep Λ, work in a regime where it is small - 'effective field theory', learn a lot but it's not the final solution
- String theory - contains $h_{\mu \nu}$ and a consistent minimum distance scale, but lots of other degrees of freedom

What does $\int D g$ mean?

Second attempt -

metric democracy...

4-dimensional manifolds are only partially charted territory it's a very hard problem, so let's look at a toy model ...

What does $\int D g$ mean?

Second attempt -

metric democracy...

4-dimensional manifolds are only partially charted territory it's a very hard problem, so let's look at a toy model ...

What does $\int D g$ mean?

Second attempt -

metric democracy...

4-dimensional manifolds are only partially charted territory it's a very hard problem, so let's look at a toy model ...

What does $\int D g$ mean?

Second attempt -
metric democracy...
\Longrightarrow topology democracy?

4-dimensional manifolds are only partially charted territory it's a very hard problem, so let's look at a toy model ...

What does $\int D g$ mean?

Second attempt -

metric democracy...
\Longrightarrow topology democracy?

Wormholes!

Splits!
Joins!

4-dimensional manifolds are only partially charted territory it's a very hard problem, so let's look at a toy model ...

graph distance \sim geodesic distance

3-fold vertex ~ place of positive curvature 6-fold vertex ~ place of zero curvature

7-fold vertex ~ place of negative curvature

Idea...

What do our 'universes' look like?

Volume $\left(s<s_{0}\right) \propto s_{0}^{4}$
A long, long way from flat 2d space!

$$
\begin{gathered}
\text { Volume }\left(s<s_{0}\right) \propto s_{0}^{4} \\
\text { A long, long way from flat 2d space! }
\end{gathered}
$$

It is extraordinarily non-trivial that our quantum universe is so very four-dimensional locally and globally

